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We consider lattice boson systems interacting via potentials which are super- 
stable and regular. By using the Wiener integral formalism and the concept of 
conditional reduced density matrices we are able to give a characterization of 
Gibbs (equilibrium) states. It turns out that the space of Gibbs states is non- 
empty, convex, and also weak-compact if the interactions are of finite range. We 
give a brief discussion on the uniqueness of Gibbs states and the existence of 
phase transitions in our formalism. 
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1. INTRODUCTION 

The main  purpose of this paper is to give a characterization of Gibbs states 
(equilibrium states) of lattice boson systems (lattice systems of quan tum 
anharmonic  oscillators) interacting via potentials which are superstable 
and regular. The model we consider can be viewed as a model for the quan-  
tum anharmonic  crystals t41 and is closely related to lattice field theory with 
cont inuous times. ~1~ Recently the coupled lattice boson systems have been 
used to describe proton dynamics in hydrogen-bonded systems (ref. 16 and 
references therein). Thus it may be worth investigating the mathematical  
structure and physical properties of the systems. 

There have been several studies on lattice boson systems. The infinite- 
volume limit of correlation functions for quan tum anharmonic  oscillators 
with gentle (bounded)  perturbat ions has been studied in detail by Albeverio 
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and Hcegh-KrohnJ 1~ Park has constructed the infinite-volume limit theory 
of systems satisfying superstability and regularity conditions, and showed 
the clustering property of the Gibbs state in the high-temperature 
regimeJ "-~ Recently the clustering property and analyticity of the infinite- 
volume-limit Gibbs state have been established for one-dimensional lattice 
boson systems for any value of nonzero temperature) xT~ The existence of 
phase transitions has been proved for a class of quantum anharmonic 
oscillators, t'21 Even if there were extensive studies as mentioned above, 
many problems concerning the detailed properties of the Gibbs states, such 
as an exact definition of equilibrium states, remain open. In this paper we 
give a characterization of Gibbs states and then investigate the structure 
of the space of Gibbs states for lattice boson systems. We then discuss 
the uniqueness of Gibbs states and the possibility of the first-order phase 
transitions in our formalism. 

It is generally accepted that in quantum statistical mechanics equi- 
librium states are those of KMS statesJ 3"11'26-29) The algebra of observables 
is given by a quasilocal algebra 9.I = U• 9.1A, where od~ is the algebra of 
bounded linear operators on the local Hilbert space ~ ,  A c Z" (or R"), 
and the union runs over all bounded regions in Z" (or RV). Let r,, t e R, be 
a one-parameter group of time evolution automorphisms on 9.I. For a state 
on 9.I to be an equilibrium state one demands it to satisfy a typical condi- 
tion, the KMS condition: a state p on a C*-dynamical system (92, ~) is a 
z-KMS state at fl e R if p(A%~(B))= p(BA) for all A, B in a suitable norm 
dense subalgebra of g.I. Thus, in order to construct the infinite-volume 
theory for a given model, one has to construct the time evolution 
automorphism z and a state p from local time automorphisms 

za,(A)=e"',,Ae -i'n.4, A~9.1A 

and the local Gibbs state 

p z( A ) = Z ~ ' Tr(e -/~U"A ) 

respectively, where Ha is a local Hamiltonian and ZA is the normalization 
factor. For details we refer to ref. 3. The above framework has been applied 
successively to bounded quantum lattice spin systems. 13"~1~ 

In the cases of lattice boson systems and (interacting) quantum 
particle systems, the situations are much more complexJ 3~ A global state- 
ment of the time evolution as a group of automorphisms of the quasilocal 
algebra has not been obtained. The problem with the time evolution has 
been partially circumvented by using the Green's function method) ~9'~~ 
The finite-volume Green's functions are given by 

G A(A, B; t)= PA(Ar~(B)) 
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Under appropriate conditions on the interactions, the infinite-volume-limit 
Green's functions exist and satisfy desired properties. From the infinite- 
volume Green's functions it was possible to construct a Hilbert space ~,  a 
strongly continuous unitary representation U of the time evolution on ~,  
and the algebra of observables. For detailed discussions, we refer to refs. 3, 
19, and 20. In the framework of the Green's function method it is difficult 
to give a characterization of Gibbs states as states on the quasilocal 
algebra 9.1. 

Recently Fichtner and Freudenberg t5 7~ tried to characterize the 
normal (locally normal) states for quantum particle systems by using a 
point process and conditional reduced density matrices (CRDM). The point 
process contains information connected with position measurements and 
CRDM with local Gibbs states (local density matrices). Using the concept 
of CRDM together with a process, we would like to characterize Gibbs 
states for lattice boson systems and then investigate the structure of the 
Gibbs state space. More precisely, for any bounded A c Z" let 9./A be 
the algebra of bounded linear operators on o'r = (~iEA ~ii, where ~ is the 
copy of the a p r i o r i  Hilbert space L2(Ra). The local Hamiltonians are of 
the form 

HA= -~  Y~ ~,+ V(xA) 
i~A 

where A i is the Laplacian operator on L2(R d) and V ( x A )  is an interaction 
function on (Rd) A. By the Feynman-Kac formula, the operator exp(--HA) 
has its integral kernel 

e - H. '(x A , YA ) = f P,.,,..,. , (dsA ) e - V~s.,~ 

where xA and YA are points in (Ra) ', SA ~ (C[0, 1]) A, V(s A )= S 1 V(SA(I))dl, 
and P.,. ,. .,.., is the conditional Wiener measure (see Section 2 for the nota- 
tion). We thus have an integration on the path space s'2 A = (C[0, 1 ])A. This 
gives us a hint to introduce a family of conditional states (specifications) 
on each subalgebra 9.1A and Gibbs measures on s '2=(C[0,  1]) z'. For a 
state p on 9.I to be a Gibbs state we demand that it satisfy the condition 

p(A)=f dv(#)p~(A), AEga. 

for some Gibbs measure v on (2 (together with some additional condi- 
tions), where p,~ is the conditional local state defined by the conditional 
reduced density matrix [see Definition 2.8 and the expression (3.2)]. Under 
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the superstability and regularity conditions it turns out that the space of 
Gibbs state is nonempty, convex, and weak *-compact. Thus we are able to 
give sufficient conditions for the uniqueness of Gibbs states and the 
existence of phase transitions in our formalism. For detailed discussions, 
see Sections 2 and 3. 

We organize this paper as follows: In Section 2, we introduce nota- 
tions, definitions, and basic assumptions on the potentials together with 
some necessary preliminaries on the Wiener measure. We then give a 
characterization of Gibbs states in terms of Gibbs measures and condi- 
tional reduced density matrices, and then state our main results. In 
Section 3 the proofs of the main results are produced. In Section 4 we give 
a brief discussion on the uniqueness of Gibbs states and the existence of 
phase transitions. In Section 5 we list open problems related to further 
properties of Gibbs states and dynamics (time evolutions) of the systems. 
In an appendix we give proofs of technical estimates (superstability 
estimates). 

2. P R E L I M I N A R I E S  A N D  M A I N  R E S U L T S  

We consider lattice boson systems on the lattice Z". By c.g we mean the 
class of finite subsets of Z". At each site i e Z "  we associate an identical 
copy of the Hilbert space L2(R d, dx), where dx is the Lebesgue measure 
on R a. For x = (x ~ ..... x d) ~ R d, i = (it ..... i,.) ~ Z" we write 

I d . .71/2 
L. I= L ( < ) - j  , 

For a bounded region A c Z" w c  write 

X A =  { X i : i ~ A } ,  

Iil = max lit[ (2.1) l~<l~<v 

dXA = l'-I dx, (2.2) 
ir 

The Hilbert space for lattice boson systems in A e cg is given by 

9r = (~) L2(R a, dxi) 
i~A  

= L 2 ( ( R d )  A, dxa) 

We introduce a Hamiltonian operator on ,,~A by 

HA= -�89 Z "t,+ V(xA) 
i e A  

V(xA)- Y. 
A c , 4  

(2.3) 

(2.4) 
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where d~ is the Laplacian operator for the variable x i ~ R  d and for each 
A ~ Z v, ~n is the interaction potential which is a measurable real-valued 
function on (Rd) a. 

Throughout this paper we impose the following conditions on the 
interaction: 

A s s u m p t i o n  2.1. The interaction ~ =  (~,~),~=z,' satisfies the 
following conditions: 

(a) q~a is a Borel measurable function o n  (Rd)  zt. 

(b) q~,j is invariant under translations of Z". 

(c) (Superstability). There are A > 0  and c e R  such that for every 
XA ~ (Ra) A, 

V(x~)= y~ ~,Ax~)>>. Y~ [ A x e - c ]  
. d ~ A  i ~ A  

(d) (Strong regularity). There exists a decreasing positive function ~u 
on the natural integers such that 

~U(r)<<.Kr . . . . .  forsome K a n d ~ > 0  with ~ ~ ( I i l )<A 
i ~  Z v 

Furthermore, if A l ,  A2 are disjoint finite subsets of Z" and if one writes 

V(X A,,~ A:)= V(X A,) + V(X A,) + W(X A,, X A,) 

then the bound 

IW(XA,,XA2)I~ ~ ~ ~ ( l i - - j l )  ' 2~(x i "~X~)') 
iE AI .jE A2 

holds. 

R e m a r k .  The first part of Assumption 2.1(d) [~ i~z ,  7 ' ( I i l )<A]  
can be weakened as in Hypothesis 4.1 of ref. 15. 

For a bounded domain A c Z", the C*-algebra of local observables is 
defined by 

9aA = ~ ( ~ )  (2.5) 

where . ~ ( ~ )  is the algebra of all bounded operators on ~ .  If 
A~c~A2=(~, then J F A ~ A 2 = ~ , |  and 9,IA, is isomorphic to the 
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C*-algebra OAA,| where IA2 denotes the identity operator  on oYfA2. 
In this way we identify ~A as a subalgebra on 9.IA, if A c A'. Let 

9.1= [,.) OAA (2.6) 
A ~ l 

be the algebra of the quasilocal observables. Notice that 9.I has an identity. 
As mentioned in Introduction, the Wiener integral formalism of lattice 

boson systems plays a key role in the sequel. For  notational convenience 
we set the inverse t e m p e r a t u r e / / t o  be one. 

For  x, y ~ R  a let us denote by W,.,. the set of continuous paths 
o9: [0, 1] ~ R d with o9(0)=x,  co ( l )=  y. W.,..,. is endowed with the standard 
Borel space structure. By P.,..,. we mean the conditional Wiener measure 
o n  W~:. y, (10'28) 

P.,.. ,.(W.,..,,) = (2n) -a/2 exp( - 1/2 Ix - y l  2) 

For  finite AcZ"  and xA, y,~(Ra) A, W.,.,.,., and P.,.J..,'A mean the 
Cartesian product  Xj~A W.,.,.,; and the product  measure Xj~AP.,v..,.r 
respectively. We identify the space W ........ x~R a, with a single space 
W =  Wo. o by means of the mapping co *-+ 09 + x. Measures P ....... and P = Po.o 
are transformed thereby into each other. Fur thermore  we use the map 
W.,...,.*-+ Wo, o given by og*-+og+L,-..,., where L.,...,. is the linear function 
L.~.,.(t)=x+t(y-x). The measure P.,..,, is transformed thereby into 
e x p ( - � 8 9  2) Po.o. The product  space W.,.I,.,., is transformed into W A 
analogously in which the function L,.,,.y,,(t)=xA +t(yA--XA) is used. 
We shall use the notat ion 

S = R a x  W and s=(x, og)ES (2.7) 

as well as 

S=RaxRax W and g=(x, y, og)~S 

The spaces S and S are provided with the norms 

,lsl, =[~  ls(t)lZdt] '/2 

(2.8) 

(2.9) 

and 

II~[I--[f~ 'g(t)l'-dt] '/2 (2.10) 

where s(t)=x+ og(t), g ( t )=  L,.. , .(t)+ og(t). If there is no confusion we will 
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just write s 2, g2 for lisll z, I[~ll 2, respectively. We give an a priori measure 2 
on S as follows: 

2(ds) - dx P(dog), s = (x, co) 

where dx is the Lebesgue measure on R a. We note that 

f ).(ds) < ~ ,  s = (x, w) ( 2 . 1 )  e - ~S2 I 

for all ~ > 0. In fact, 

I2(ds)exp(-c~s2)=f dx f  P , . . , . (dw)exp[-~w2( t )d t  ] 

- ~ J  + ~ x 2 ) ] ) <  = T r ( e x p [ - (  l 

Given a finite A c Z v, SA and SA have the obvious meaning. We use the 
notat ion 

D - s Z ' = ( R a x  W) z '  (2.12) 

and 
f2 -  sZ '=(RaxRax  W) z" (2.13) 

For  each i e  Z", let Pi: (2 --* S be the projection, pi(s) = si, the value (path)  
on the ith site. For  each subset A c Z", we have a local ~r-algebra ~A, 
which is the minimal a-algebra for which pi, i ~ A ,  are measurable.  We 
simply write ~ for ~-z,. By ~'((2, ~-)  we mean the probabil i ty measures 
on D. 

Before introducing Gibbs  measures on /2 ,  we give the notion of regular 
measures on D: 

D e f i n i t i o n  2.2.  A Borel probabil i ty measure on (D, ~ )  is said to 
be regular if there exist A > 0 and ~ so that the projection #(dsA) on any 
(D, ~ a )  satisfies 

g(SA l lt)<~exp[-- ~ ( , ' I s~- -$ ) ]  
iE./I  

where g(sA [1~) is such that  II(dsA)=2(dsA)g(SA [//). 

We write that  

�9 a(s~) = ~a(sa(t)) dt 

V(s~)=  X ,/'~(s~) 
A c A  

(2.14) 
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and for s ~ f2 and A c Z", 

W(s,,, s,,~)= ~ ,l, ~(s ~) 
LIr~A~O 

zt c~ AC ~ f~  

(2.15) 

Let us define 

N ~ N  

1il ~</ 

(2.16) 

This definition is invariant under linear translations of Z". Following the 
method used in the proof  of the first part of Proposit ion 5.2 of ref. 26, it is 
easy to show that each regular measure on (g2, ~-) has its support  on ~.  
We say that such a measure is temperedJ 26~ 

The partition function in a finite A c Z" for the interaction q5 with 
boundary condition ge  ~ is defined by 

Z~(g) =- f 2A(dSA) exp[  -- V(sA)- W(SA, g.~,)] (2.17) 

We note that the partit ion function is well defined from the assumptions 
for r The Gibbs specification ),~ ,~ = (t A)A~'e. with respect to ~ is defined 
by(9,23) 

I Z~(g)- ' f 2A(ds,) exp [ - -  V(sA) -- W(SA, gAC)] 

)'A~( A I g )=  X 1A(S,L,, ) g  " if g~ 

~ 0  if g r  

(2.18) 

where A ~ f f  and 1,4 is the indicator function on A and S,tSAC is the con- 
figuration defined by SA on A and gA, on A c, respectively. It is easy to 
check that the Gibbs specification satisfies the consistency condition19'231: 
For  A c A ,  g ~ ,  

)'A~'~(A I g)--  j'= ~(ds* J g)','~(A Is*)  

= ~ ( A  I #) 

We now give a definition of Gibbs measures on (O, ~ ) :  
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D e f i n i t i o n  2.3. A Gibbs measure /a for the potential r is a 
tempered Borel probability measure on (f2, i f )  satisfying the equilibrium 
equations 

#(A ) = [/~(dg) y~(A I g), A J 

We denote by (r the family of all Gibbs measures. 

We topologize the space ~((2, f f )  with the topology of local 
convergencelg"2Jl: For e a c h / a ~ ( I 2 ,  i f )  the sets 

{ v ~ ' ( I 2 , ~ ) :  max Iv(A,)-U(A,)I <e} 
1 <~k<~n 

with At ..... A, ~ t . ) , ,  ~ ~A, ~ > 0, and n/> 1 form a base of neighborhoods 
of/~. If the potential q5 satisfies the conditions in Assumption 2.1, then it 
turns out that ff~(O) is nonempty, closed, convex, compact, and has 
Choquet simplex structure. 

Before studying the structure of the Gibbs measures let us introduce 
the notion of boundary conditionsJ 14.1s) 

D e f i n i t i o n  2.4. (Boundary conditions). We consider free, pure, 
and general boundary conditions, and for all A ~ cs they give probability 
measures on (s ~ )  as follows: For any A ~.~:  

(a) Free b.c.: 

= Z~ ~ f 2(dsA) exp[ -- V(sA)] 1A(SAO.c) ~flA~ ) 

(Z~ ~ is a normalization constant and oAc means the zero configuration 
on AC). 

(b) Pure b.c.: 

(c) General b.c.: 

y{~lt A f , , ~ , ) =  r 

(~ is a regular measure). 

For ~ c A, ~ e ~ ,  let us put 

(. 
gA(sa Is) Z~(g)- '  J 2(dsA\~)exp[--V(SA)- W(SA, gAc)] 

We have a Rueile-type probablity estimate.114" 15, 26.27 

(2.19) 
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P r o p o s i t i o n  2.5.  Let the hypotheses of Assumption 2.1 hold. Then 
there exist A* > 0  and 6 such that for every LJ and g~ ~ there exists A(A, g) 
such that whenever A ~ A(A, g) the bound 

gA(s~lg)<~expl- ~ (A*s~-6)] 
l E A  

holds. 

The proof  of the above proposition is given in the appendix. Using the 
above probability estimate, we have the following result. 

Theorem 2.6. The net (v~'l)A~,~ (by (*) we mean any b.c.) has a 
cluster point in ff~(12). 

On  the other hand, we have also a converse result to the above 
theorem: a tempered equilibrium (Gibbs) measure is necessarily regular. 
In fact we have: 

T h e o r e m  2.7.  Let the hypotheses of Assumption 2.1 hold. Then 
any Gibbs measure v e c~(,(2) is regular. Futhermore,  f f~(f2)is  nonempty,  
convex, compact  in the local convergence topology, and a Choquet  
simplex. 

As a consequence v is an infinite-volume Gibbs measure with general 
b.c. detemined by a regular measure which is just v. Therefore v is the 
(trivial) limit of general b.c. Gibbs measures/~4"~sl We postpone the proofs 
of Theorem 2.6 and Theorem 2.7 to the next section. 

Let us now consider Gibbs (equilibrium) states on the quasilocal 
algebra 9.1. For  a finite set A c Z" and a configuration g e ~ ,  we define 
a function kA(XA, YA;g), XA, yA~(Ra) A, which takes the role of the 
conditional reduced density matrixl3'6'71: 

/ ,  

kA (.va,)'A ; s) = Za(s) - ' exp( - �89 Ixa - YA 12) J P(dcoA ) 

x exp[  - V(o9 a + L,.,..,.,) - W(o9 A + L,-.,.y.,, g,, ,)] (2.20) 

Remember that P(dcoA) is the conditional Wiener measure on Wo.o and 
L ........ .,(t)=x,f+t(yA--XA). With the help of these functions and the 
regular Gibbs measures we define Gibbs states as follows: 

D e f i n i t i o n  2.8.  We say that a state p on the quasilocal algebra 
9.I = UAE,6 ~ is a Gibbs state if the restriction PA of p to 0d A is given by 

pA(A)=Tr.~r,(KAA), A ~ A  
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where the density matrix KA is defined by its integral kernel 

K,~(XA, YA)= f v(dg)kA(XA, YA ;S) 

with a Gibbs measure v e ~9~'(0). 
Remark. In the definition of Gibbs state we require the positivity 

of K,~. In general the function KA(XA, YA) may not be a positive-definite 
function. But if the Gibbs measure v is an infinite-volume limit of local 
Gibbs states v~ ~ with pure b.c. g e ~  of symmetric paths (s~ ~ is defined 
to be symmetric if s(t)=s(l-t), r e [ 0 ,  1]), then it can be shown that 
KA(XA, YA) is a positive-definite function. 

The interaction q5 is said to be of finite range with interaction range 
R ~ R if q~ = 0 for all A with dia(A) > R. 

Theorem 2.9. For a given interaction q~, let f~(od) be the family 
of all Gibbs states on 9,t. If the interaction q~ satisfies the hypotheses of 
Assumption 2.1, then f#~ is nonempty, convex, and also weak *-compact if 
the interaction is of finite range. 

The finite-range assumption on t/, for the weak*-compactness property 
should be removed. We impose it because of a technical difficulty in the 
proof. We will show Theorem 2.9 in the next section. It may be worth 
giving some questions related to further properties of Gibbs states. 

Remark. (a) Is any p~.Cr a modular state? ~31 If it is so, one 
has the modular automorphisms. Using the Green's function method, ~2~ it 
can be shown that any infinite-volume-limit Gibbs state with free (or 
constant) b.c. is a modular state. 

(b) Is ~ ( 9 . I )  a Choquet simplex? If each p~C~(oA) is a modular 
state, then the answer is positive by the KMS conditions with respect to 
the modular automorphisms and the method used in refs. 3 and 11. 

For the integral kernel of the density matrix we have the following 
bound: 

Proposition 2.10. Let the interaction q~ satisfy the hypotheses of 
Assumption 2.1. Then there exist positive numbers c, d, and e such that the 
bound 

KA(XA, YA)<~exp[-- ~ (cx~ +dy~--e)] 
i E A  

holds. Furthermore, if we assume that the interaction is of any polynomial 
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type, then for each n E N, i e A, K.~(xA, YA) is n-times differentiable and the 
bound 

IO':"KA(xA'YA)"~=YAI<~expl-- ,~A (c'x~ - e ' ) ]  

holds for some positive c' and e'. 

The above bounds should be useful in the further study of the model. 
We will produce the proof of the above proposition in the appendix. 

3. P R O O F S  OF M A I N  RESULTS 

Before proving the main results we remark that our formalism has 
been set up in such a way that most of the results of Gibbs measures on 
(f2, ~ )  can be proven by using the methods employed in refs. 14, 15, 17, 
19, 25, and 26 with necessary modifications. In particular we closely follow 
the contents of Section 4 (and its Appendix) of ref. 14 to establish basic 
properties of the Gibbs measures. 

In this section we give proofs for the main results in Section 2. The 
technical estimates in Propositions 2.5 and 2.10 are be carried out in the 
appendix. 

To prove Theorem 2.6 we need the following result: 

L e m m a  3.1. (a) Let ~ga ( f2 ,  ~ )  be a regular measure. Then for 
all e > 0, 3No such that ~(~Co)< e (and hence VN~> No). 

(b) There exist A * > 0  and c5>0 such that the following holds: For 
every A and N o e N  there is A(z/, No) such that the bound 

gA(s,~lg)<<.exp[-- ~ (A*s~-6)] for A~A(A, No) 
i E A  

holds uniformly for g~ ~N0, where g ,  is defined in (2.19). 

Proof. (a) The inequality follows from the fact that ~ is a regular 
measure (and hence ~ is supported on ~ = UN ~N) and that the sequence 
(~N)NE N is increasing. 

(b) Let us fix No and A (we may assume A contains the origin). 
There exists Nl > No such that ~iE E,,1- g~ ~< N~ V,, for all ge  ~N0 and n ~ N, 
where En]* is any translation of In]  coming from a translation of the 
origin within d and V,, is the volume of In]  (see the appendix for the nota- 
tion). We note that in the proof of Proposition 2.5 in the appendix the set 
A(A, g) (g~ ~No) depends on such a number N~ and not on the individual 
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configurations ge ~N0. Hence the bound in the lemma holds uniformly for 
ge ~N0 if A = A is sufficiently large. 1 

Proof of Theorem 2.6. We consider the case of general b.c. Other 
cases can be dealt with in a similar manner. Let ~e~(12, ~ )  be a regular 
measure and (v~r be the net of associated probability measures on 
(f2, ~ ) .  By Proposition 4.9 of ref. 9, the existence of a cluster point will be 
shown just after we show that (V~A r is locally equicontinuous, i.e., given a 
sequence (A,,) ~ ~ with Am ~. (~, 

lim lim sup v~r (3.1) 
m ~ o'2. A E ~  

Now let ( A , , ) ~ ,  A , , , ~  be given. Then 

v~'(A..) = ~ r Z A(g)-' f 2(dS A ) exp[ -- V(s A ) -- W(s A, gAc)] 1A.,(Sa ) 

<~+ I~ r I 2(dsa) lAm(sa) gA(sa [g) 
NO 

Equation (3.1) follows from Lemma3.1, the Lebesgue dominated con- 
vergence theorem, and the arbitrariness of ~ (in that order). The proof that 
the limiting measure is Gibbsian can be carried out in the same way as in 
the proof of Theorem 4.5 of ref. 14. We remark that the proof of the Gibbs 
property for limiting measures in ref. 14 relies on the basic estimates in 
Lemma A4.1 of ref. 14 which are direct consequences of Theorem 4.1 of 
ref. 14. We derive the result corresponding to Theorem 4.1 of ref. 14 in the 
appendix (Lemma A.4) and so we can follow the argument used in ref. 14 
to prove our result. Even if the proof in ref. 14 is given only for the case 
of pure boundary conditions (which differ from ours), a similar argument 
can be extended to general boundary conditions as mentioned in ref. 14. 1 

Proof of Theorem 2.7. The regularity of the Gibbs measure is given 
in Lemma A.2 in the appendix. The nonemptiness and convexity are 
obvious. To prove compactness, given a net (v,)eff*(g2) of Gibbs 
measures, we rely again on showing that (v,) is locally equicontinuous. Let 
(A , , , )e~  be such that A , , ~ .  Using the equilibrium conditions and 
regularity of Gibbs measures in Lemma A.2, we obtain that 

v~(A.,) = f 2(dsa)1A~(S~)g(sa Iv,) 

<~ f 2(dsa)1A,,(s4)exp I -  y '  (~s~-6)]  
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uniformly in A,. Thus the local equicontinuity of a net (v~) follows from 
the above bound. 

Consider the linear space 50 of real measures on (/2, o~) which are 
tempered and satisfy the equilibrium conditions. Denote by 5 a the inter- 
section of the cone oct" of positive measures in 50 with the hyperplane 
{# [ / a ( l ) = l} .  Let ~'d be the Gibbs specifications defined in (2.18). For 
any A � 9  ~,d(A Ig)>/0. Using this fact and the equilibrium conditions, 
it is easy to show that if # �9 50, then [/~1 �9 50- With respect to the usual 
order on measure any two elements /a, and /1 2 have a l.u.b. [(/a, + # 2 ) +  
I/a~-/l_,l-I/2 and a g.i.b. [(/~, +#2) - I /~ - /~ , . 1 ] /2 ,  which are again in 5 ~ 
Since 50 is a lattice for order defined by J~ff, 5 a [=fq~(t2)]  is a simplex. 
The proof of Theorem 2.7 is now completed. | 

Proof of Theorem 2.9. The existence of a Gibbs state follows 
immediately from Theorem 2.6 (and the Remark below it). The convexity 
also follows from Theorem 2.6. To prove that c~'~(9.1) is weak*-compact it 
is sufficient to show that fq*(od) is weak *-closed by the Banach-Alaoglu 
theorem. We prove the weak*-closedness of if*(9.1) as follows: Let (p,) be 
a net of Gibbs states which converges to ~ in the weak *-topology. By the 
Gibbs condition (Definition 2.8) there exists a net (v,) of Gibbs measures 
which converges to a Gibbs measure f in the topology of local con- 
vergence. We must show that f defines ~ through the Gibbs condition. 
Denote by X]2~ the family of Hilbert-Schmidt operators in od d. Notice that 
since ~;]z~ is a-weakly dense in Od d (von Neumann density theorem), any 
normal state on oA d is uniquely defined by its restriction on X]2~. By 
Proposition 2.10 and the Fubini theorem, any Gibbs state can be written 
a s  

p(A)=ITr(AK~l)v(dg), A�9 (3.2) 

for some v�9 where k'~gl is the operator of trace class defined by the 
integral kernel in (2.20). Thus we have 

p,(A) = I T r (AK~) )  v,(dg), A �9 7s 

We need that the relation obtained from (3.2) by replacing p and v 
with t~ and f, respectively, holds. Let the interaction q5 be of finite 
range with the interaction range R. For given zt choose a A �9 such that 
{ i �9  cA .  For given AeZtz 2) we use the abbreviated 
notation 

FA(g) ---- Tr(AK~ I) 
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In the appendix we show that one can choose 6 > 0  smaller than the 
constant A > 0 appearing in Lemma A.2 such that for sufficiently large A 
the bound 

IFA(g)I <~D(A') I-I ea~ (3.3) 
A'\A 

holds, where A'=A with dist(A, A'")=R. Denote by It(ds) the finite 
measure e x p ( - , 4 s  2) 2(ds). Then FA belongs to LJ(OA,,/~(dsA.)) for any 
A ~ X]2~. By Lemma A.2 each Gibbs measure defines a state on L~(f2A.,/a). 
Thus each net (v,) of Gibbs measures has a convergent subnet which con- 
verges to a state ~ of L~(f2A,, /~). Let (v,) be the net corresponding to the 
convergent net (p~) of Gibbs states on 9.I. As before let f be the limiting 
Gibbs measure (in the local convergence topology). Since 9=  f on the set 
of bounded functions on f2A., ~ = ~ on Lt(I-2A., p), and so 

lim ~ v,(dg) FA(g)=f f(dg) Fi(g), A ~ X ]  2) 

This implies that 

tim p = ( A ) = t  f(dg) FA(g) 

= ~ f(dg) Tr(AK~ s~) 

for any A e Z~ 21. Here we have used the Gibbs conditions to get the second 
equality. This completes the proof, II 

4. U N I Q U E N E S S  OF G I B B S  STATES A N D  P H A S E  
T R A N S I T I O N S  

After establishing the structure of the space of Gibbs states, it may be 
worth commenting on the uniqueness of Gibbs states and the possibility of 
the first-order phase transitions. We now introduce the inverse temperature 
3 = 1/kT in the notation in Section 2. For x, y ~ R d denote by W l,.,m,, the set 
of continuous paths co: [0, fl]--* R d with co(0)=x,  w ( 3 ) = y ,  and P!,~. the 
conditional Wiener measure on W ~a~" A'. ) '" 

I#l W~t~l =(2nfl)-a/2exp - 

822/75/1-2-15 
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We replace P and W by p~a~ and W ~), respectively, in Section 2, and use 
the notation 

and 

g2*~ = (Ra• W~)z  " 

q']P)(s~) = Jo ~(s~(t)) dt 

~P~, A ~ cg, and ~P~ are the corresponding or-algebras on Oct~ Denote by 
a3~(g2 Ipl) the space of the Gibbs measures on (/2 ~t~l, ~ p l )  and ff~.a(9.l) the 
space of the Gibbs states on 9.I. 

The following properties on the uniqueness of Gibbs states should 
hold: 

C o n j e c t u r e  4.1. Under Assumption 2.1 the following results hold. 

(a) For v~>2, there exists f lo>0 such that for any 0 < f l < f l o ,  
a3~'t~(~) is a singleton. 

(b) For v=  1, a3~'~(~l) is a singleton for any f l>0.  

It should be possible to prove the above conjecture by developing a 
cluster expansion method for any Gibbs state. In refs. 20 and 17, cluster 
expansions for zero b.c. have been developed to show the clustering 
property for high temperatures and for the dimension v = 1, respectively. 
We plan to develop an expansion method for any Gibbs state in the near 
future. 

We next give a brief discussion on the existence of phase transitions 
for lattice boson systems. For the details, we refer to ref. 12 and references 
therein. Consider the interaction of the form t~z~ 

V(XA)= ~ V~(xi)--J ~ x~xj (4.1) 
i E A  i , j ~ A  

I t -  ./I = l 

where V ~tl is the one-particle interaction satisfying the following condi- 
tions: (a) VIt~EC~(R) and there exist a > 0 ,  b ~ R  such that VIJ~(x)>~ 
axZ+b, ( b ) a > J v ,  (c) Vq'l(x) = V~lJ(-x), and (d) Vll~(x) has global non- 
degenerate minima at x =  +-qo, qo > 0. For N~ N denote by To the factor 
group Z"/(NZV), i.e., Tu is a discrete torus. Let w~  ~ be the local Gibbs 
states with periodic boundary conditions ~j't2~ and co ~pl an infinite-volume 
limit of co~ ~, Ne  N. Define a long-range order parameter by 

((, P(/3)= lim co~ ~ Tul -I ~ x~ 
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We write that 

I,.=(27r)-" I(o.2~), (v-j~= cos pj)-'/2dp 

Assume that the inequality I,.(2J)-~/2< qo 2 holds. 

Theorem 4.2. (12) Let v>~3. For any interaction satisfying the con- 
ditions listed above there exists flo > 0 such that P(fl)> 0 for any fl > flo- 

Conjecture 4.3. Under the assumptions as in Theorem 4.2, there 
exists a flo > 0 such that card(C~*'~(9.l)) = 1 if fl < flo and ca rd ( f~ ' a (~ ) )  t> 2 
if f l>flo.  

Using the method in Section 3, it may be possible to show that 
any periodic state is a Gibbs state in the sense of Definition 2.8. If 
Conjecture 4.1 holds, then it follows that Conjecture 4.3 also holds. 

The proof of Theorem 4.2 relies on the method of the infrared 
bounds, (8) and so the result can be extended to systems having continuous 
symmetry. In ref. 2 the phase diagram for a class of classical unbounded 
spin models has been constructed by generalizing the Pirogov-Sinai theory 
of phase transitions. (22~ With appropriate modifications one should be able 
to extend the results in ref. 2 to the quantum situation. 

5. D I S C U S S I O N :  O P E N  P R O B L E M S  

As mentioned in Section2, there are several problems to which 
we would like to have the answers. The local density matrix KA in 
Definition 2.8 should be positive for any Gibbs state. We believe that 
the answer must follow from the definitions of Gibbs measures and the 
conditional reduced density matrix in (2.20). See also the discussion in the 
Remark below Definition 2.8. 

It would be important to construct the dynamical system for the 
model to investigate the mathematical structure in more detail. If any 
Gibbs state is a modular state, 131 one has the modular automorphisms and 
so a dynamics. See the Remark below Theorem 2.9. Thus we would like to 
know whether any Gibbs state is a modular state or not. On the other 
hand, one may use the Green's function method (3'j9"2~ to construct a 
dynamical systerri at least for any infinite-volume-limit Gibbs state with 
constant boundary conditions. Let (.~p, 7rp, t2p) be the cyclic representation 
with respect to a given Gibbs state p E ~ * ( ~ ) .  It will be nice if for any 
p ~ (9~(9.1) there is a direct way to construct the time evolutions on n,(9.I)" 
leaving s'2p invariant. 
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A P P E N D I X  

As stated at the beginning of Section 3, the main methods needed to 
prove Propositions 2.5 and 2.10 have been used in refs. 14, 17, 20, and 27. 
We remark that the estimates are similar to those in the propositions 
obtained in refs. 17 and 20. 

We note that there are r > 0 and x > 0 such that for all A ~ cg 

where X = {s �9 S: Is(t)l ~< r, 0 ~< t ~< 1 }. This is because, using Assumption 
2.1(c) and (d), we have 

VIs,,)<~ Y, VIs,)+ M Y~ s~ 
iEA iEA 

where M =  ~j~z ,  ~u(IJl). The bound (A.1) now follows from (2.11). 
Given ct > 0, we can choose an integer Po > 0 and for each n >/Po an 

integer l,, > 0 such that 

~ - ( 1  +2~)1 <~  

Let [ n ] = { i ~ Z " :  Ii1~<1,,} and V,,=(2l,,+l)h The following is Proposi- 
tion 2.1 of ref. 27. 

P r o p o s i t i o n  A.I .  Let e > 0  and c/>0 be given, and let ~g be a 
decreasing positive function on the natural integers such as given in 
Assumption 2.1(d). If c~ is sufficiently small one can choose an increasing 
sequence (if,,) such that ff,,~>l, ~b,,~oo, and fix P>Po so that the 
following is true. 

Let n(.) be a function from Z" to the reals >/0. Suppose that there 
exists q such that q/> P and q is the largest integer for which 

~. n(i) 2 >1 t~q Vq 
i~[q] 

Then the bound 

i e [ q + l ]  

holds. 

c+ Z Y 
iE[q+ l ]  .jq~[q+ 1] 

~u(li--jl)�89 ~ n(i)" 
i~ [q+  1] 
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Proof of Proposition 2.5. We may assume the origin lies in A. 
Suppose ge ~ is such that 

g~ <<.N2V,, (A.2) 
i~ [hi*  

for all n ~ N  and here In-I* means any translation of In]  coming from a 
translation of the origin with A. We prove the proposition by using 
the method similar to that used in the proof of Theorem4.1 of ref. 14. 
Following refs. 26 and 27 we split the configurations. For fixed P >/Po, put 

~o={SEg'2 ~ s~<~lqVq, Vq>/P} 
i~ [q] 

~Rq={S~2 ~ s~>/OqVqand ~ s~<~btVt, W>q} (A.3) 
i~ [q] i~ [/] 

",q >~ p / 

From the definition ~ in (2.16) one has ~ c ~. 
We decompose gA(sa [ g) into two parts 

gA(Sa I s) = p' + p" 

Here p' is the contribution of those SAgA,~9tO and p" the contribution of 
those SAgAc~ Uq>~e 9~q. 

We choose the function ~k in Proposition A.I as (see also ref. 14) 

~k(r)=b log+ r, log+ r=max{1,1ogr} (A.4) 

with b sufficiently large and fixed. We choose A(A, ~)~ A so large that if 
the box [q]* is not contained in A(A, ~), then N2~< log lq. For p' we can 
proceed as in ref. 27. p" is expressed as a sum over q t> P. Still no difference 
arises when the cube [q] (centered somewhere in A) is in A. For other 
cases, in ref. 27 there appears a factor e x p [ -  V(sA)]. Therefore we lack a 
factor exp[--~.i~[q]\ a (As~--c)]. Using Assumption 2 .1(c)and (d), we 
obtain that 

V(SA)+W(sA,Stq]\a)+ ~ (As~--c)>~�89 ~ (As2-c) (A.5) 
i E  [q]\A iE [q] 

and for any s e ~N 

E 
i~ [q]\A 

(As~- c) <~ AN2Vq+I + cVq 

~<A log(/q+ ~) Vq+~ +cVq (A.6) 
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From the above bounds one has that 

exp[--- V(s A) -  W(S A, StU]\A)] 

E' ] ~<exp - ~  }-" (As~-c) exp Oq+,Vq+,+cVq 
i~ [q ]  

Following ref. 27 [and also (A4.6) of ref. 14], the following bound holds: 

x exp --C"Oq+lgq+l+~ q+l+-'gOq+lmq+l 
t . .q~ p 

We choose b large enough so that (A/b)<C", which guarantees the 
summability of (A.5). This completes the proof of the proposition. II 

In the remainder of the appendix we use the notation 

g,,(s,~ ] g) = Z A(g)- ~ exp[ - V(s,~) - W(s A, sA,)] (A.7) 

for any A~ff.  See also the notation in (2.19). 
We next show the regularity of the Gibbs measures on (D, ~-). 

L e m m a  A.2. There exist positive constants ,4> 0, 6 > 0 such that 
the bounds 

g(s,j , v ) ~ < e x p f -  ~ ( , 4 s~ -6 ) ]  
i e A  

hold uniformly in v e f#~(12), where g(s~lv) is defined in Definition 2.2. 

ProoL Let veC~*(g2) and suppose A e ~ .  Using the equilibrium 
conditions, the decomposition of configurations in (A.3), and the tempered- 
hess of v, one obtains that 

v(A)= v(A c~ 9~) 

q>~ P 

= f v(dg) f 2(dsA,)1A(s,j)1,~0(sa,g) gAe(SAe Is) 

+q~e f v(dg) f 2(dsA,)1,~(s,~)1,~,(sAj ) ga,(SA, is) 

=P'+P" (A.8) 
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In the above we choose Aq such that /ICAq and [ q +  1 ] c A  u for each 
q ~> P. Since [q + 1 ] = Au, there is no lack of factors appearing in the proof 
of Proposition 2.5. Thus the method used in ref. 27 can be applied directly 
to get the uniform bounds in the lemma. II 

Before proving Proposition 2.10, we state a lemma concerned on the 
Wiener measure. 

L e m m a  A.3 (Ref. 3, Theorem 6.3.8). Let R > 0 be given and D c R a 
be a bounded convex domain, whose boundary 0D is a C3-surface of mean 
curvature less than 1/R. Then there exist positive numbers c', d', and e' 
such that the following inequality holds 

o<~fP.,..,.(dg){1- 1 n(.~) } 

~< exp { -c 'd (x ,  OD )2 _ d'd(y, OD) 2 + e' } 

for any x, y ED, where l o is the characteristic function of the set 
{g:g(t)ED, 0~<t~<l} and d(x, OD)(d(y, OD)) is the distance from x(y) 
to OD. 

Proo[ of Proposition 2. 10. Let v ~ ff*(f2) be given. For given d = Z" 
and xa and Ya one has 

Ka(x~, y a ) = f  v(dg) kn(x~, );j; g) 

r t" 
= J v(dg) J P ....... .j(d~a) g j (~  ]g) (A.9) 

One then uses the decomposition in (A.3), the Fubini theorem, and 
equilibrium conditions (to L'-funtions) to obtain 

Kj(xa, y~)= ~ P ...... .j(d~) f v(d~)1 2(dsA,\,j) 

• { 1,ao(gaSAe\~gA~) gAe(gaSAe\~ I S)} 

q>~ p ' 

X { l ~ q ( g z j S a q \ A g A ~  ) g A q ( g z l S A u \ a  l S)} (A.10) 

Although ga are not loops (x~-r y~ in general), we could do the same as 
in Lemma A.2 to show that 

K~(xa'Yn)<<'f[i~nP ...... "(dgi) ]exp[  - , ~ A ( A * g ~ - 6 , ]  (A.11) 
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Let us fix a number R > 0 and i t  A, and suppose that 2R < min{ Ixi[, lY~I }. 
Define the domain D~ such that 

Dr = U B,(t) (A.12) 
t e [ 0 , 1 ]  

where B~(t) is the ball centered at x~+t(yi-x~) with radius 
Ix~+t(y~-x~)l/2. Obviously Dj satisfies the conditions in Lemma A.3. 
Now we split the integration 

I P.,.,, y,(dsi) exp(- A*s~ + 6)= ;in + Io,t 

where Si, is the contribution of the paths from {it: g~(t) ~ D~, 0 ~< t ~< 1 } and 
Sour is that of the remaining paths. By Lemma A.3, Sou, is bounded as 

fout<<, exp 6.exp ( - c '  X--44-d'Y-44 + e' ) (A.13) 

For Sin (without loss of generality we may assume Ix,I ~IY,'I) we have 
1 2 g~ >1 ~xi and consider two cases: (a) 2 Ix,-I ~< lYil and (b) 2 Ix~l > lYL 
For (a), 

and for (b), 

I ( ' , ' )  ( '  ) ~<exp - -~ A x, + 6 (2rQ-d/2exp -- -} [x~-- yil z 

<~exp ( _  1 2 exp ~ )  -~A*x~+6') ( -  (A.14) 

1 A*x~ + &) 

( 1A, ,_  1 A* 2+6) (A.15) ~< e x P k - g  x; -~ Yi 

If xi and/or ),~ are near the origin, the terms - x ~  and - y ~  may be 
introduced at our disposal and the terms x~ and y~ can be absorbed to the 
constant term. Since the above argument can be applied to each i ~ A, the 
bound for K,~(xA, Ya) follows from Eqs. (A.13), (A.14), and (A.15). 

The second part of the proposition follows from the method used in 
the proof of Theorem l(d) of ref. 17. That is, if the interaction is of 
polynomial type, then differentiations of the function K,,(x,~, y,j) result in 
multiplications with "polynomial powers." Hence the second inequality in 
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Proposition 2.10 follows from the first one. For the details we refer to 
ref. 17. I 

Proof of Bound (3.3). Let A ~Z~21 and hA be the integral kernel 
function of A. Then h A is square-integrable. By (A.9) and Fubini theorem 

Tr(AK~') = J" dxa f dya hA(y~, x a ) f  P.~. ,,j(dga ) f  2(dsA\4) 

x f v(dS) gA(gjSA\a 15) 

Here we have used the notation (A.7). Let A ' =  {i I dist(i, A)~< R}. Then it 
can be written that 

f 2(dsA\a) f v(dS) gA(gasA\a 1 5) 

= I v(dg) f a(dsA\~) Z(sA.)-' 

x e x p [ -  V(JaSA\~)- W(J~SA\ ~, 5A'\A)] (A.16) 

As in the proof of Proposition 2.5, we write the above as a sum of p' 
and p". As before we lack a factor exp[-~i~tq] \A (As~-c)]. Choose a 
sufficiently small ~ > 0 (e.g., 0 < 6 < A/4) and substitute 

1= [1 exp(-6g~) [1 exp(~g~) 
iEA'\A j ~ A ' \ A  

into the right-hand side of (A.16). With the new superstable constant 6 one 
carry out the estimate as in ref. 27. Thus there exist y > 0 and c such that 
(A.16) is bounded by 

Performing the remaining integration, one gets the bound. | 

Finally we collect the result used in the proof of Theorem 2.7. Put 

X(a)={s~12ls~<aloglil, lil>~l }, a > 0  

The following is the result corresponding to Theorem 4.1 of ref. 14. 
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L e m m a  A . 4 .  There  exist , ~ > 0  and  6 > 0  such that  the fol lowing 
result  holds:  F o r  every A ec~ there is A(A) such that  for g ~ X ( a )  the b o u n d  

g A ( s ~ l g ) ~ < e x p [ -  ~ ( . 4 s ~ - 6 ) ]  
i ~ z J  

holds. 

Proo f .  We remark  that  by A s s u m p t i o n  2.1(d) the cond i t i on  in 
Hypothes i s  4.1 of ref. 15 is satisfied. Thus  a direct app l ica t ion  of the 
me thod  used in the proof  of T h e o r e m  4.1 of ref. 14 gives the result. II 
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